ВВЕДЕНИЕ

Краткая история развития металлических конструкции

Номенклатура и область применения металлических конструкций

Организация проектирования

Краткая история развития металлических конструкции

Понятие "металлические конструкции" объединяет в себе их конструктивную форму, технологию изготовления и способы монтажа. Уровень развития металлических конструкций определяется, с одной стороны, потребностями в них народного хозяйства, а с другой - возможностями технической базы: развитием металлургии, металлообработки, строительной науки и техники. Исходя из этих положений история развития металлических конструкций может быть разделена на пять периодов.

Первый период (от XII в. до начала XVII в.) характеризуется применением металла в уникальных по тому времени сооружениях (дворцах, церквах и т.п.) в виде затяжек и скреп для каменной кладки. Затяжки выковывали из кричного железа и скрепляли через проушины на штырях. Одной из первых таких конструкций являются затяжки Успенского собора во Владимире (1158 г.). По зрелости конструктивного решения выделяется металлическая конструкция, поддерживающая каменный потолок над коридором между притворами Покровского собора - храма Василия Блаженного (1560 г.). Это первая известная нам конструкция, состоящая из стержней, работающих на растяжение, изгиб и сжатие. Затяжки, поддерживающие потолок в этой конструкции, укреплены для облегчения работы на изгиб подкосами. Поражает, что уже в те времена конструктор знал, что для затяжек, работающих на изгиб, надо применять полосу, поставленную на ребро, а подкосы, работающие нa сжатие, лучше делать квадратного сечения.

Второй период (от начала XVII в. до конца XVIII в.) связан с применением наклонных металлических стропил и пространственных купольных конструкций ("корзинок") глав церквей. Стержни конструкций выполнены из кованых брусков и соединены на замках и скрепах горновой сваркой. Конструкции такого типа сохранились до наших дней. Примерами служат перекрытия пролетом 18 м над трапезной Троицко-Сергиевского монастыря в Загорске (1696-1698 гг.), перекрытие Большого Кремлевского дворца в Москве (1640 г.), каркас купола колокольни Ивана Великого (1603 г.), каркас купола Казанского собора в Ленинграде пролетом 15 м (1805 г.) и др.

Третий период (от начала XVIII в. до середины XIX в.) связан с освоением процесса литья чугунных стержней и деталей. Строятся чугунные мосты и конструкции перекрытий гражданских и промышленных зданий. Соединения чугунных элементов осуществляются на замках или болтах. Первой чугунной конструкцией в России считается перекрытие крыльца Невьянской башни на Урале (1725 г.). В 1784 г. в Петербурге был построен первый чугунный мост. Совершенства чугунные конструкции в России достигли в середине XIX столетия. Уникальной чугунной конструкцией 40-х годов XIX в. является купол Исаакиевского собора, собранный из отдельных косяков в виде сплошной оболочки. Конструкция купола состоит из верхней конической части, поддерживающей каменный барабан, венчающий собор, и нижней, более пологой части. Наружная оболочка купола с помощью легкого железного каркаса опирается на чугунную конструкцию.

Чугунная арка пролетом 30 м применена в перекрытии Александринского театра в Петербурге (1827 - 1832 гг.). В 50 - х годах XIX в. в Петербурге был построен Николаевский мост с восемью арочными пролётами от 33 до 47 м, являющийся самым крупным чугунным мостом мира. В этот же период наслонные стропила постепенно трансформируются в смешанные железочугунные треугольные фермы (рис. 1.4). В фермах сначала не было раскосов (см. рис. 1.4,а), они появились в конце рассматриваемого периода (см. рис. 1.4,б). Сжатые стержни ферм часто выполняли из чугуна, а растянутые - из железа. В узлах элементы соединялись через проушины на болтах. Отсутствие в этот период прокатного и профильного металла ограничивало конструктивную форму железных стержней прямоугольным или круглым сечением. Однако преимущества фасонного профиля уже были поняты и стержни уголкового или швеллерного сечения изготовляли гнутьем или ковкой нагретых полос.

Четвертый период (с 30-х годов XIX в. до 20-х годов XX в.) связан с быстрым техническим прогрессом во всех областях техники того времени и, в частности, в металлургии и металлообработке.

В начале XIX в. кричный процесс получения железа был заменен более совершенным - пудлингованием, а в конце 80-х годов - выплавкой железа из чугуна в мартеновских и конверторных цехах. Наряду с уральской базой была создана в России южная база металлургической промышленности. В 30-х годах XIX в. появились заклепочные соединения, чему способствовало изобретение дыропробивного пресса; в 40-х годах был освоен процесс получения профильного металла и прокатного листа. В течение ста последующих лет все стальные конструкции изготовлялись клепаными. Сталь почти полностью вытеснила из строительных конструкций чугун, будучи материалом более совершенным по своим свойствам (в особенности при работе на растяжение) и лучше поддающимся контролю и механической обработке.

Чугунные конструкции во второй половине XIX в. применялись лишь в колоннах многоэтажных зданий, перекрытиях вокзальных дебаркадеров и т. п., где могла быть полностью использована хорошая сопротивляемость чугуна сжатию.

В России до конца XIX в. промышленные и гражданские здания строились в основном с кирпичными стенами и небольшими пролетами, для перекрытия которых использовались треугольные металлические фермы. Конструктивная форма этих ферм постепенно совершенствовалась: решетка получила завершение с появлением раскосов; узловые соединения вместо болтовых на проушинах стали выполнять заклепочными с помощью фасонок.

В конце прошлого столетия применялись решетчатые каркасы рамно-арочной конструкции для перекрытия зданий значительных пролетов. Примерами являются покрытия Сенного рынка в Петербурге (1884 г.) пролетом 25 м, Варшавского рынка пролетом 16 м (1891 г.), покрытие Гатчинского вокзала (1890 г.) и др.

Наибольшего совершенства рамно-арочная конструкция достигла в покрытии дебаркадеров Киевского вокзала в Москве, построенного по проекту В. Г. Шухова (1913-1914 гг).

В конструкциях этих сооружений хорошо проработаны компоновочная схема, опорные закрепления и узловые заклепочные соединения.

Во второй половине XIX в. значительное развитие получило металлическое мостостроение в связи с ростом сети железных дорог. На строительстве мостов развивалась конструктивная форма металлических конструкций, совершенствовалась теория компоновки и расчета, технология изготовления и монтажа. Принципы проектирования, разработанные в мостостроении, были перенесены затем на промышленные и гражданские объекты. Основателями русской школы мостостроения являются известные инженеры и профессора С. В. Кербедз, Н. А. Белелюбский, Л. Д. Проскуряков.

Пятый период (послереволюционный) начинается с конца 20-х годов, с первой пятилетки, когда молодое социалистическое государство приступило к осуществлению широкой программы индустриализации страны.

К концу 40-х годов клепаные конструкции были почти полностью заменены сварными, более легкими, технологичными и экономичными"

Развитие металлургии уже в 30-х годах позволило применять в металлических конструкциях вместо обычной малоуглеродистой стали более прочную низколегированную сталь [сталь кремнистую для железно - дорожного моста через р.Ципу (Закавказье) и сталь ДС для Дворца Советов о московорецких мостов].

Номенклатура и область применения металлических конструкций

Металлические конструкции применяются сегодня во всех видах зданий и инженерных сооружений, особенно если необходимы значительные пролеты, высота и нагрузки. Потребность в металлических конструкциях чрезвычайно велика и непрерывно увеличивается (см. рис. 1.12). Базой для удовлетворения этой потребности являются большой объем производимой в стране стали (в 1982 г. выплавлено 155 млн. т стали), заводы металлических конструкций и специализированные монтажные организации, оснащенные современной техникой, специализированные проектные организации и научно-исследовательские институты

В зависимости от конструктивной формы и назначения металлические конструкции можно разделить на восемь видов.

1. Промышленные здания. Конструкции одноэтажных промышленных зданий выполняются в виде цельнометаллических или смешанных каркасов, в которых по железобетонным колоннам устанавливаются металлические конструкции покрытия здания ("шатер") и подкрановые пути. Цельнометаллические каркасы в основном применяются в зданиях с большими пролетами, высотой и оборудованных мостовыми кранами большой грузоподъемности. Каркасы промышленных зданий являются наиболее сложными и металлоемкими конструктивными комплексами.

2. Большепролетные покрытия зданий. Здания общественного назначения, театры и некоторые здания производственного характера (ангары, авиасборочные цехи, лаборатории) имеют большие пролеты (до 100-150 м), перекрывать которые наиболее целесообразно металлическими конструкциями. Системы и конструктивные формы большепролетных покрытий очень разнообразны. Здесь возможны балочные, рамные, арочные, висячие, комбинированные, причем как плоские, так и пространственные системы. К конструкциям зданий общественного назначения предъявляются высокие эстетические требования.

3. Мосты, эстакады. Мостовые металлические конструкции на железнодорожных и автомобильных магистралях применяются при больших, а в отдаленных районах и при средних пролетах, а также при сжатых сроках возведения. Как и большепролетные покрытия, мосты имеют разнообразные системы: балочную, арочную, висячую (см. рис. 1.21), комбинированную.

4. Листовые конструкции в виде резервуаров, газгольдеров, бункеров. Металлические конструкции обладают следующими достоинствами, позволяющими применять их в разнообразных сооружениях.

Надежность металлических конструкций обеспечивается близким совпадением их действительной работы (распределение напряжений и деформаций) с расчетными предположениями. Материал металлических конструкций (сталь, алюминиевые сплавы) обладает большой однородностью структуры и достаточно близко соответствует расчетным предпосылкам об упругой или упругопластической работе материала.

Легкость. Из всех изготовляемых в настоящее время несущих конструкций (железобетонные, каменные, деревянные) металлические конструкции являются наиболее легкими. Легкость конструкций с определяется отношением плотности материала р к его расчетному сопротивлению R, 1/м:

с = p/R.

Чем меньше значение с, тем относительно легче конструкция. Благодаря высоким значениям расчетных сопротивлений для малоуглеродистой стали с=3,7-10 - 4 1/м, для стали высокопрочной с=1,7-10 - 4 1/м, для дюралюмина марки Д16-Т с=1,1-10 - 4 1/м, для бетона марки МЗОО с=1,85-10 - 3 1/м, для дерева с -5,4-10 -4 1/м.

Индустриальность. Металлические конструкции в основной своей массе изготовляются на заводах, оснащенных современным оборудованием, что обеспечивает высокую степень индустриальности их изготовления. Монтаж металлических конструкций также производится индустриальными методами - специализированными организациями с использованием высокопроизводительной техники.

Непроницаемость. Металлы обладают не только значительной прочностью, но и высокой плотностью - непроницаемостью для газов и жидкостей. Плотность металла и его соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления газгольдеров, резервуаров и т. п. Металлические конструкции имеют и недостатки, ограничивающие их применение. По нейтрализации этих недостатков необходимы специальные меры.

Коррозия. Не защищенная от действия влажной атмосферы, а иногда (что еще хуже) атмосферы, загрязненной агрессивными газами, сталь корродирует (окисляется), что постепенно приводит к ее полному разрушению. При неблагоприятных условиях это может произойти через два-три года. Хотя алюминиевые сплавы обладают значительно большей стойкостью против коррозии, при неблагоприятных условиях они также корродируют. Хорошо сопротивляется коррозии чугун. Повышение коррозионной стойкости металлических конструкций достигается включением в сталь специальных легирующих элементов, периодическим покрытием конструкций защитными пленками (лаки, краски и т. п.), 'а также выбором рациональной конструктивной формы элементов (без щелей и пазух, где могут скапливаться влага и пыль), удобной для очистки и защиты.

Небольшая огнестойкость. У стали при t=200°С начинает уменьшаться модуль упругости, а при t=600°С сталь полностью переходит в пластическое состояние. Алюминиевые сплавы переходят в пластическое состояние уже при t=300°С. Поэтому металлические конструкции зданий, опасных в пожарном отношении (склады с горючими или легковоспламеняющимися материалами, жилые и общественные здания), должны быть защищены огнестойкими облицовками (бетон, керамика, специальные покрытия и т. п.).

При проектировании металлических конструкций должны учитываться следующие основные требования.

Условия эксплуатации. Удовлетворение заданным при проектировании условиям эксплуатации является основным требованием для проектировщика. Оно в основном определяет систему, конструктивную форму сооружения и выбор материала для него.

Экономия металла. Требование экономии металла определяется большой его потребностью во всех отраслях промышленности (машиностроение, транспорт и т. д.) и относительно высокой стоимостью.

В строительных конструкциях металл следует применять лишь в тех случаях, когда замена его другими видами материалов (в первую очередь железобетоном) нерациональна.

Транспортабельность. В связи с изготовлением металлических конструкций, как правило, на заводах с последующей перевозкой на место строительства в проекте должна быть предусмотрена возможность перевозки их целиком или по частям (отправочными элементами) с применением соответствующих транспортных средств.

Технологичность. Конструкции должны проектироваться с учетом требований технологии изготовления и монтажа с ориентацией на наиболее современные и производительные технологические приемы, обеспечивающие максимальное снижение трудоемкости.

Скоростной монтаж. Конструкция должна соответствовать возможностям сборки ее в наименьшие сроки с учетом имеющегося монтажного оборудования.

Долговечность конструкции определяется сроками ее физического и морального износа. Физический износ металлических конструкций связан главным образом с процессами коррозии. Моральный износ связан с изменением условий эксплуатации.

Эстетичность. Конструкции независимо от их назначения должны обладать гармоничными формами. Особенно существенно это требование для общественных зданий и сооружений.

Все эти требования удовлетворяются конструкторами на основе выработанных наукой и практикой принципов советской школы проектирования и основных направлений ее развития.

Основным принципом советской школы проектирования является достижение трех главных показателей: экономии стали, повышения производительности труда при изготовлении, снижения трудоемкости и сроков монтажа, которые и определяют стоимость конструкции. Несмотря на то что эти показатели часто при реализации вступают в противоречие (так, например, наиболее экономная по расходу стали конструкция часто бывает наиболее трудоемкой в изготовлении и монтаже), советский опыт развития металлических конструкций подтверждает возможность реализации этого принципа.

Экономия металла в металлических конструкциях достигается на основе реализации следующих основных направлений: применения в строительных конструкциях низколегированных и высокопрочных сталей, использования наиболее экономичных прокатных и гнутых профилей, изыскания и внедрения в строительство современных эффективных конструктивных форм и систем (пространственных, предварительно напряженных, висячих, трубчатых и т.п.), совершенствования методов расчета и изыскания оптимальных конструктивных решений с использованием электронно-вычислительной техники.

По всем этим направлениям в Советском Союзе ведется большая исследовательская работа, что позволяет систематически уменьшать удельные затраты металла (на 1 м2 площади здания, на единицу выпускаемой продукции и т.п.).

Эффективно и комплексно производственные требования удовлетворяются на основе типизации конструктивных элементов и целых сооружений.

Типизация металлических конструкций в Советском Союзе получила весьма широкое развитие. Разработаны типовые решения часто повторяющихся конструктивных элементов-колонн, ферм, подкрановых балок, оконных и фонарных переплетов. В этих типовых решениях унифицированы размеры элементов и сопряжений. Для некоторых элементов разработаны стандарты.

Разработаны типовые решения таких сооружений, как радиомачты, башни, опоры линий электропередачи, резервуары, газгольдеры, пролетные строения мостов, некоторые виды промышленных зданий, сооружений и т. п.

Типовые решения разработаны на основе применения оптимальных с точки зрения затраты материала, размеров элементов, оптимальной технологии их изготовления и возможностей транспортирования.

Типизация и проводимая на ее основе унификация и стандартизация обеспечивают большую повторяемость, серийность изготовления конструктивных элементов и их деталей на заводах и, следовательно, способствует повышению производительности труда, сокращению сроков изготовления на основе эффективного использования более совершенного оборудования и специальных технологических приспособлений (кондукторов, копиров, кантоватилей и т.п.).

Организация проектирования

Проектирование зданий и сооружений производится на основании задания на проектирование, которое составляется на основе утвержденной схемы развития и размещения соответствующей отрасли народного хозяйства. В задании устанавливаются требования по внедрению новой техники и передового опыта, показатели по эффективности капитальных вложений, снижению материалоемкости и трудоемкости строительства.

Проектирование выполняется в одну или две стадии:

в одну стадию - рабочий проект (для предприятий, зданий и сооружений, строительство которых будет осуществляться по типовым и повторно применяемым проектам, а также технически несложных объектов);

в две стадии - проект и рабочая документация (для других объектов строительства).

Стадийность разработки проектной документации устанавливается заказчиком в задании на проектирование.

На стадии проекта дается краткое описание и обоснование основных архитектурно-строительных решений, целесообразности применения металлических конструкций, определяется основная конструктивная схема сооружения и подбираются соответствующие типовые конструкции. Разрабатываются основные чертежи: планы и разрезы со схематическим изображением основных несущих и ограждающих конструкций.

В состав рабочей документации металлических конструкций входят рабочие чертежи КМ (конструкции металлические) и деталировочные чертежи металлических конструкций КМД (конструкции металлические деталировочные).

Чертежи КМ выполняются проектной организацией на основании утвержденного проекта.

В рабочих чертежах КМ решаются все вопросы компоновки металлических конструкций и увязки их с технологической, транспортной, архитектурно-строительной и другими частями проекта.

В состав рабочих чертежей КМ входят: пояснительная записка, данные о нагрузках, статические и в необходимых случаях динамические расчеты, общие компоновочные чертежи, схемы расположения частей конструкций с таблицами сечений элементов, расчеты и чертежи наиболее важных узлов конструкций и полная спецификация металла по профилям.

По чертежам КМ заказывается металл и разрабатываются деталировочные чертежи КМД. Чертежи КМД разрабатываются, как правило, в конструкторском бюро завода - изготовителя металлических конструкций с учетом технологических особенностей завода (станки, поточные линии, сварочное оборудование).

 

[ Об авторах | В начало | На обложку | Регистрация ]

 

Hosted by uCoz